ENDA ET1122 (MASTER) DIN RAIL MOUNTING PID UNIVERSAL STEP CONTROLLER

Thank you for choosing ENDA ET1122 PID universal step controller.

GENERAL FEATURES

* DIN rail mounting box.
* Selectable dual-set value.
* Selectable PT100, J, K, L, T, S, R sensor typeS.
* Selectable $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-10 \mathrm{~V}, 2-10 \mathrm{~V}, 0-25 \mathrm{mV}$ and $0-50 \mathrm{mV}$ input.
* Programmable D1 and D2 digital contact input.
* Automatic calculation of PID parameters (SELF TUNE). Selftune for automatic PID calculation or manually enter PID parameters if known.
* Control outputs can be cancelled. (To use for measurement purposes).
* Possible to control C/A2 or ANL/SSR outputs manually.
* Soft-Start.
* Communication via RS-485 ModBus protocol.
* Programmable and firmware update via ModBus.
* Selectable analog, SSR or relay control output.
* Selectable $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-10 \mathrm{~V}$ and 2-10V analog control output.
* C/A2 Relay output can be programmed as secondary alarm or control output.
*A1 relay output can be programmed as PID cooling or Primary alarm output.
* Selectable Heating/Cooling control.
* Zero point input shift (Offset feature for input)
* In the case of sensor failure, periodical running or relay state selection.
* Up to 7 slave devices can be connected simultaneously.
* Profile control up to 16 steps.
* On-demand relay output at profile steps.
* Timer and thermostat feature can be used in profile control mode.
* CE marked according to European Norms.

C
R®HS Compliant

ENVIRONMENTAL CONDITIONS

Ambient/storage temperature $\quad 0 \ldots+50^{\circ} \mathrm{C} /-25 \ldots+70^{\circ} \mathrm{C}$ (with no icing)

Max. Relative humidity	80% Relative humidity for temperatures up to $31^{\circ} \mathrm{C}$, decreasing linearly to 50% at $40^{\circ} \mathrm{C}$.
Protection rating	According to EN 60529 Ip20

Height

According to EN 60529 Ip20
Do not use the device in locations subject to corrosive and flammable gases.
ELECTRICAL CHARACTERISTICS

Supply	24 V DC $\pm \% 20$
Power consumption	Max. 5VA
Wiring	$1.5 \mathrm{~mm}^{2}$ screw-terminal connections
Line resistance	For thermocouple max.100ohm, for 3 wired PT100 max. 200hm
Data retention	EEPROM (minimum 10 years)
EMC	EN 61326-1: 2012 (Performance criterion B for standard EN 61000-4-3)
Safety requirements	EN 61010-1:2010 (Pollution degree 2, overvoltage category II)

INPUTS	
D1 Input	Programmable 1st. input control button.
D2 Input	Programmable 2nd. input control button.
OUTPUTS	
C/A2	Relay : 250 V AC, 2A (for resistive load), N.O. or Alarm2 Selectable as Control or Alarm2 output.
A1	Relay : 250V AC, 2A (for resistive load), NO/NC selectable. (Alarm1 output).
ANL/SSR	$0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-10 \mathrm{~V}, 2-10 \mathrm{~V}$ analog output and selectable as SSR. Max. load resistance 600 ohms for mA output and SSR mode. Source resistance 500 ohms for V output.
Life expectancy for relay	Mechanical 10.000.000 operation; Electrical 300.000 operation
CONTROL	
Control type	Single set-point and alarm control
Control algorithm	On-Off / P, PI, PD, PID (selectable)
A/D converter	14 bits
Sampling time	100 ms (minimum)
Proportional band	Adjustable between 0% and 100%. If $\mathrm{Pb}=0 \%$, On-Off control is selected.
Integral time	Adjustable between 0.0 and 100.0 minutes
Derivative time	Adjustable between 0.00 and 25.00 minutes
Control period	Adjustable between 1 and 250 seconds
Hysteresis	Adjustable between 1 and $50^{\circ} \mathrm{C} / \mathrm{F}$
Output power	The ratio of power at a set point can be adjusted between 0\% and 100\%

HOUSING

Housing type	Rail - mounted box according to DIN 43 700.
Dimensions	W29xH90xD64mm
Weight	Approx. 200g (after packing)
Enclosure material	Self extinguishing plastics used.
While cleaning the device, solvents (thinner, benzine, acid etc.) or corrosive materials must not be used.	

Input type		Temperature range		Accuracy
		${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	
PT100 Resistance Thermometer	EN 60751	$-199.9 . . .600 .0{ }^{\circ} \mathrm{C}$	-199.9...999.9 ${ }^{\circ} \mathrm{F}$	$\pm 0,2 \%$ (of full scale) ± 1 Digit
PT100 Resistance Thermometer	EN 60751	-200... $600{ }^{\circ} \mathrm{C}$	-328...1112 ${ }^{\circ} \mathrm{F}$	$\pm 0,2 \%$ (of full scale) ± 1 Digit
J (Fe-CuNi) Thermocouple	EN 60584	$-30.0 . . .600 .0^{\circ} \mathrm{C}$	-22.0....999.9 ${ }^{\circ} \mathrm{F}$	$\pm 0,5 \%$ (of full scale) ± 1 Digit
J (Fe-CuNi) Thermocouple	EN 60584	-30....600 ${ }^{\circ} \mathrm{C}$	-22.... $1112{ }^{\circ} \mathrm{F}$	$\pm 0,5 \%$ (of full scale) ± 1 Digit
$\mathrm{K}(\mathrm{NiCr}-\mathrm{Ni})$ Thermocouple	EN 60584	-30.0...999.9 ${ }^{\circ} \mathrm{C}$	-22.0....999.9 ${ }^{\circ} \mathrm{F}$	$\pm 0,5 \%$ (of full scale) ± 1 Digit
K ($\mathrm{NiCr}-\mathrm{Ni}$) Thermocouple	EN 60584	$-30 . . .1300^{\circ} \mathrm{C}$	-22.... $2372{ }^{\circ} \mathrm{F}$	$\pm 0,5 \%$ (of full scale) ± 1 Digit
$\mathrm{L}(\mathrm{Fe}-\mathrm{CuNi})$ Thermocouple	DIN 43710	-30.0...600.0 ${ }^{\circ} \mathrm{C}$	-22.0...999.9 ${ }^{\circ} \mathrm{F}$	$\pm 0,5 \%$ (of full scale) ± 1 Digit
L (Fe-CuNi) Thermocouple	DIN 43710	-30....600 ${ }^{\circ} \mathrm{C}$	-22.... $1112{ }^{\circ} \mathrm{F}$	$\pm 0,5 \%$ (of full scale) ± 1 Digit
T (Cu-CuNi) Thermocouple	EN 60584	$-30.0 \ldots . .400 .0^{\circ} \mathrm{C}$	-22.0...752.0 ${ }^{\circ} \mathrm{F}$	$\pm 0,5 \%$ (of full scale) ± 1 Digit
T (Cu-CuNi) Thermocouple	EN 60584	-30....400 ${ }^{\circ} \mathrm{C}$	-22...... $752{ }^{\circ} \mathrm{F}$	$\pm 0,5 \%$ (of full scale) ± 1 Digit
S (Pt10Rh-Pt) Thermocouple	EN 60584	$-40 . . .1700^{\circ} \mathrm{C}$	-40.... $3092{ }^{\circ} \mathrm{F}$	$\pm 0,5 \%$ (of full scale) ± 1 Digit
R (Pt13Rh-Pt) Thermocouple	EN 60584	$-40 . . .1700^{\circ} \mathrm{C}$	-40.... $3092{ }^{\circ} \mathrm{F}$	$\pm 0,5 \%$ (of full scale) ± 1 Digit
0-20mA input		-10000...+10000 (m	scale range 10000)	$\pm 0,2 \%$ (of full scale) ± 1 Digit
4-20mA input		-10000...+10000 (m	scale range 10000)	$\pm 0,2 \%$ (of full scale) ± 1 Digit
$0-10 \mathrm{~V}$ input		-10000...+10000 (m	cale range 10000)	$\pm 0,2 \%$ (of full scale) ± 1 Digit
2-10V input		-10000...+10000 (m	scale range 10000)	$\pm 0,2 \%$ (of full scale) ± 1 Digit
$0-25 \mathrm{mV}$ input		-10000...+10000 (m	scale range 10000)	$\pm 0,2 \%$ (of full scale) ± 1 Digit
$0-50 \mathrm{mV}$ input		-10000...+10000 (m	scale range 10000)	$\pm 0,2 \%$ (of full scale) ± 1 Digit

CONNECTION DIAGRAM

ENDA ET1122 and ET1112 is intended for installation within control panels. Make sure that the device is used only for intended purpose. The shielding must be grounded on the instrument side. During an installation, all of the cables that are connected to the device must be free of electrical power. The device must be protected against inadmissible humidity, vibrations, severe soiling. Make sure that the operation temperature is not exceeded. All input and output lines that are not connected to the supply network must be laid out as shielded and twisted cables. These cables should not be close to the power cables or components. The installation and electrical connections must be carried out by a qualified staff and must be according to the relevant locally applicable regulations.

SENSOR INPUT

For J-K-T-S-R Type Thermocouples :
Use the correct compensation cables for thermocouples. Do not use jointed cables. Make sure to connect to the right place and right polarities at the input terminals as shown in the figure.

For Resistance Thermometer:
When 2 wired PT100 is used, terminals 2 and 3 must be short circuited.

For $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-10 \mathrm{~V}, \mathbf{2 - 1 0 V}, 0-25 \mathrm{mV}$ and $0-50 \mathrm{mV}$ Inputs : Make sure to connect to the right place and right polarities at the input terminals as shown in the figure.

D1 and D2 Function Button Inputs
Mechanical switch must be used

4Logic output of the instrument is not electrically insulated from the internal circuits. Therefore, when using a grounding thermocouple, do not connect the logic output terminals to the ground.

Note: 1) Mains supply cords shall meet the requirements of IEC 60227 or IEC 60245.
2) In accordance with the safety regulations, the power supply switch shall bring the identification of the relevant instrument and it should be easily accessible by the operator.

Equipment is protected throughout by DOUBLE INSULATION. $0.4-0.5 \mathrm{Nm}$ C ϵ

R®HS Compliant

Order Code : ET1122 (Master) ET1112 (Slave)

ALARM1 AND ALARM2 OUTPUT TYPES (Diagrams are shown for Alarm1)

TIMER / THERMOSTAT OUTPUT SAMPLES

PROFILE CONTROL OUTPUT SAMPLES

MULTI-STEP PROFILE CONTROL OUTPUT SAMPLES

Figure 4

	Step1	Step2	Step3	Step4	Step5
Target Temp.	PH3 $=100$	PH5 $=100$	PH7 $=300$	PH9 $=300$	PH11 $=100$
Time	PH4 $=30$	PH6 $=20$	PH8 $=60$	PH10 $=40$	PH12 $=60$
A1 Output	PC0 $=1$	PC1 $=0$	PC2 $=0$	PC3 $=1$	PC4 $=0$
C/A2 Output	PC16 $=0$	PC17 $=1$	PC18 $=0$	PC19 $=1$	PC20 $=0$

ENDA ET1122 (MASTER) and ET1112 (SLAVE) PID UNIVERSAL
STEP CONTROLLER MODBUS ADRESS MAP

1.1 Memory Map for Thermostat Holding Registers

	Parameter Number	Holding Register addresses Decimal (Hex)	Data type	Data content	Read / Write Permission	Factory defaults
	H0	0000d (0000h)	Word	Control output, temperature set value.	R W	400
	H1	0001d (0001h)	Word	Control output, second temperature set value.	RW	500
	H2	0002d (0002h)	Word	Control output, minimum set value limit.	R W	0
	H3	0003d (0003h)	Word	Control output, maximum set value limit.	R W	600
	H4	0004d (0004h)	Word	Control output, proportional band set value (Adjustable between 0\%-100\%).	R W	4.0
	H5	0005d (0005h)	Word	Control output, hysteresis value (Adjustable $1-50^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$.).	R W	2
	H6	0006d (0006h)	Word	Control output, integral time value (Adjustable between 0.1 - 100.0 min .).	R W	4.0
	H7	0007d (0007h)	Word	Control output, derivative time (Adjustable between 0.01-25.00 min.).	R W	1.00
	H8	0008d (0008h)	Word	Control output, period time set value (Adjustable between 1-250 sec.).	R W	1
	H9	0009d (0009h)	Word	Energy value of the control output set value (Adjustable between 0\%-100\%.).	R W	0
	H10	0010d (000Ah)	Word	Control output energy percentage value in case of sensor failure (Adjustable between 0\%-100\%).	R W	0
	H11	0011d (000Bh)	Word	Soft start time for control output (Adjustable between 1-250 sec.).	R W	0
	H12	0012d (000Ch)	Word	Alarm1 output, temperature set value.	R W	500
	H13	0013d (000Dh)	Word	Alarm1 output, minimum set value limit.	R W	0
	H14	0014d (000Eh)	Word	Alarm1 ouput, maximum set value limit.	R W	600
	H15	0015d (000Fh)	Word	Alarm1 output, proportional band set value (Adjustable between $0.0 \%-100.0 \%$).	R W	0.0
	H16	0016d (0010h)	Word	Hysteresis value of the Alarm1 output (Adjustable between $1-50^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$).	R W	2
	H17	0017d (0011h)	Word	Integral time value of the Alarm1 output (Adjustable between 0.1-100.0 min.).	R W	0.0
	H18	0018d (0012h)	Word	Derivative time value of the Alarm1 output (Adjustable between 0.01-25.00 min.).	R W	0.0
	H19	0019d (0013h)	Word	Period time value of the Alarm1 output (Adjustable between 1-250 sec.).	R W	1
	H20	0020d (0014h)	Word	Energy value of the Alarm1 output set value (Adjustable between 0\%-100\%.).	R W	0
	H21	0021d (0015h)	Word	Alarm1 output energy percentage value in case of sensor failure (Adjustable between 0\% - 100\%).	R W	0
	H22	0022d (0016h)	Word	Alarm1 output type selection. 0 = Independent alarm. 1 = Deviation alarm. $2=$ Band alarm. $3=$ Band activity alarm after the entering into bandwidth. 4 = Independent cooling control selection for Alarm1 output. 5 = Dependent to Alarm1 output setpoint value, cooling control.	R W	0
	H23	0023d (0017h)	Word	Alarm2 output, temperature set value.	R W	500
	H24	0024d (0018h)	Word	Alarm2 output, minimum set value limit.	R W	0
	H25	0025d (0019h)	Word	Alarm2 output, maximum set value limit.	R W	600
	H26	0026d (001Ah)	Word	Alarm2 output, hysteresis value (Adjustable between 1 and $50^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$).	R W	2
	H27	0027d (001Bh)	Word	```Alarm2 output type selection. 0 = Independent alarm. 1 = Deviation alarm. 2 = Band alarm. 3 = Band activity alarm after the entering into bandwidth.```	R W	0
Configuration Parameters	H28	0028d (001Ch)	Word	Input Selections: $0==$ PT100 (Decimal) $1=$ PT100, $2=\mathrm{J}$ (Decimal) $3=\mathrm{J}$, $4=\mathrm{K}$ (Decimal) $5=\mathrm{K}$, $6=\mathrm{L}$ (Decimal) $7=\mathrm{L}$, $8=\mathrm{T}$ (Decimal) $9=\mathrm{T}$, $10=\mathrm{S}$, $11=\mathrm{R}$, $12=0-20 \mathrm{~mA}$, $13=4-20 \mathrm{~mA}$, $14=0-10 \mathrm{~V}$, $15=2-10 \mathrm{~V}$, $16=0-30 \mathrm{mV}$, $17=0-60 \mathrm{mV}$	R W	3
	H29	0029d (001Dh)	Word	Device address value for Modbus (Adjustable between 1-247.) (Only valid for master device).	RW	1
	H30	0030d (001Eh)	Word	$\begin{aligned} & \text { Modbus communication rates: } \\ & 0=1200 \mathrm{bps}, \\ & 1=2400 \mathrm{bps}, \\ & 2=4800 \mathrm{bps}, \\ & 3=9600 \mathrm{bps}, \\ & 4=14400 \mathrm{bps}, \\ & 5=19200 \mathrm{bps}, \\ & 6=38400 \mathrm{bps}, \\ & 7=57600 \mathrm{bps} \end{aligned}$	RW	3
	H31	0031d (001Fh)	Word	Digital filter coefficient (Adjustable between 1-100. If digital filter coefficient is 1,digital filter disabled).	R W	20
	H32	0032d (0020h)	Word	Control output selection value : If $0=$ C/A2 output is control output, If $1=$ SSR/ANL output is SSR output, If $2=$ SSR/ANL output is $0-20 \mathrm{~mA}$ output, If $3=$ SSR/ANL output is $4-20 \mathrm{~mA}$ output.	RW	0
	H33	0033d (0021h)	Word	Minimum percentage of analog output value.	R W	0

IMPORTANT ! : In order to access to slave registers, the "Slave_Number" X 1000 (03E8H) offset is added.
EXAMPLE : Slave number is 2, the filter coefficient parameter address is H32
2. Slave filter coefficient address is $2 \times 1000+31=2031$
sisel múhendisLik ELEKTRONIK SAN. VE Tic. A.Ş.
Serifali Mah. Barbaros Cad. No:18 Y.Dudullu 34775
UMRANIYE/ISTANBUL-TURKEY
Tel : +90 2164994664 Pbx. Fax : +90 2163657401

ENDA ET1122 (MASTER) and ET1112 (SLAVE) PID UNIVERSAL
 STEP CONTROLLER MODBUS ADRESS MAP

1.1 Memory Map for Thermostat Holding Registers (continue)

IMPORTANT ! : In order to access to slave registers, the "Slave_Number" X $1000(03 \mathrm{E} 8 \mathrm{H})$ offset is added.
EXAMPLE : Slave number is 3 , the filter coefficient value (numbered of PH32 parameter) to read $3 \times 1000=3000$ offset, Filter coefficient by adding to the 102 3rd. Slave's Filter coefficient address is found as of 3102 (0BB8h).
For 1st. slave this address is found as of $(1 \times 1000)+102=1102$ (04Eh).

ENDA ET1122 (MASTER) and ET1112 (SLAVE) PID UNIVERSAL STEP CONTROLLER MODBUS ADRESS MAP

1.2 Memory Map for Step Control Holding Registers

	Parameter Number	Holding Registel addresses Decimal (Hex)$\|$	Data type	Data content	Read / Write Permission	Factory defaults
	PHO	0100d (0064h)	Word	Profile time base set value. ($0=0000 \mathrm{sec}, 1=00 \mathrm{~m} 59 \mathrm{sec}, 2=0000 \mathrm{~min} ., 3=99 \mathrm{~m} 59 \mathrm{sec}$)	R W	0
	PH1	0101d (0065h)	Word	Maximum number of steps (Adjustable between 0 and 16. If it is 0 , in timer/thermostat mode).	RW	0
	PH2	0102d (0066h)	Word	Temperature differences of step end, can be set between 0 and H3 parameters. (During in profile control, when the target temperature is reached, step time runs out, the differences between the target temperature, the measured temperature is equal to or less than the value of this parameter is pending, so the next step is started. If H43 $=0$, the difference between the target temperature and the measured value is less than or equal to thisparameter, the timer runs. Please see Figure 2).	R W	0
	PH3	0103d (0067h)	Word	1st. Step, set value of target temperature (Parameter set between H 2 and H 3)	R W	200
	PH4	0104d (0068h)	Word	1st. Step, time value (In BCD format can be set between 0 and 99m 59s (varies according to H 42 parameter))	R W	0
	PH5	0105d (0069h)	Word	2nd. Step, set value of target temperature (Parameter set between H 2 and H 3)	R W	200
	PH6	0106d (006Ah)	Word	2nd. Step, time value (In BCD format can be set between 0 and 99m 59s (varies according to H 42 parameter))	R W	0
	PH7	0107d (006Bh)	Word	3rd. Step, set value of target temperature (Parameter set between H 2 and H 3)	R W	200
	PH8	0108d (006Ch)	Word	3 rd . Step, time value (In BCD format can be set between 0 and 99 m 59 s (varies according to H 42 parameter))	R W	0
	PH9	0109d (006Dh)	Word	4th. Step, set value of target temperature (Parameter set between H 2 and H 3)	R W	200
	PH10	0110d (006Eh)	Word	4th. Step, time value (ln BCD format can be set between 0 and 99m 59s (varies according to H 42 parameter))	R W	0
	PH11	0111d (006Fh)	Word	5th .Step, set value of target temperature (Parameter set between H 2 and H 3)	R W	200
	PH12	0112d (0070h)	Word	5th.Step, time value (In BCD format can be set between 0 and 99m 59s (varies according to H 42 parameter))	R W	0
	PH13	0113d (0071h)	Word	6th. Step, set value of target temperature (Parameter set between H 2 and H 3)	R W	200
0	PH14	0114d (0072h)	Word	6th. Step, time value (In BCD format can be set between 0 and 99m 59s (varies according to H 42 parameter))	R W	0
${ }^{\circ}$	PH15	0115d (0073h)	Word	7th. Step, set value of target temperature (Parameter set between H 2 and H 3)	R W	200
ָ̃	PH16	0116d (0074h)	Word	7th. Step, time value (ln BCD format can be set between 0 and 99 m 59 s (varies according to H 42 parameter))	R W	0
ロ	PH17	0117d (0075h)	Word	8th. Step, set value of target temperature (Parameter set between H 2 and H 3)	R W	200
은	PH18	0118d (0076h)	Word	8th. Step, time value (In BCD format can be set between 0 and 99m 59s (varies according to H 42 parameter))	R W	0
-	PH19	0119d (0077h)	Word	9th. Step, set value of target temperature (Parameter set between H 2 and H 3)	R W	200
	PH20	0120d (0078h)	Word	9th. Step, time value (In BCD format can be set between 0 and 99m 59s (varies according to H 42 parameter))	R W	0
*	PH21	0121d (0079h)	Word	10th. Step, set value of target temperature (Parameter set between H 2 and H 3)	RW	200
	PH22	0122d (007Ah)	Word	10th. Step, time value (In BCD format can be set between 0 and 99 m 59 s (varies according to H 42 parameter))	R W	0
	PH23	0123d (007Bh)	Word	11th. Step, set value of target temperature (Parameter set between H 2 and H 3)	RW	200
	PH24	0124d (007Ch)	Word	11th. Step, time value (In BCD format can be set between 0 and 99 m 59 s (varies according to H 42 parameter))	R W	0
	PH25	0125d (007Dh)	Word	12th. Step, set value of target temperature (Parameter set between H 2 and H 3)	R W	200
	PH26	0126d (007Eh)	Word	12th. Step, time value (In BCD format can be set between 0 and 99m 59s (varies according to H 42 parameter))	R W	0
	PH27	0127d (007Fh)	Word	13th. Step, set value of target temperature (Parameter set between H 2 and H 3)	R W	200
	PH28	0128d (0080h)	Word	13th. Step, time value (In BCD format can be set between 0 and 99m 59s (varies according to H 42 parameter))	R W	0
	PH29	0129d (0081h)	Word	14th. Step, set value of target temperature (Parameter set between H 2 and H 3)	RW	200
	PH30	0130d (0082h)	Word	14th. Step, time value (In BCD format can be set between 0 and 99 m 59 s (varies according to H 42 parameter))	R W	0
	PH31	0131d (0083h)	Word	15th. Step, set value of target temperature (Parameter set between H 2 and H 3)	R W	200
	PH32	0132d (0084h)	Word	15th. Step, time value (In BCD format can be set between 0 and 99 m 59 s (varies according to H 42 parameter))	R W	0
	PH33	0133d (0085h)	Word	16th. Step, set value of target temperature (Parameter set between H 2 and H 3)	RW	200
	PH34	0134d (0086h)	Word	16th. Step, time value (In BCD format can be set between 0 and 99 m 59 s (varies according to H 42 parameter))	R W	0
	PH35	0135d (0087h)	Word		RW	0
	Ph36	0136d (0088h)	Word		RW	0
	PH37	0137d (0089h)	Word	Step control parameter (Holding register of PC33-PC39 step control coils). Please see description in chapter 1.4 for the meaning of bits coil.	RW	0

IMPORTANT ! : In order to access to slave registers, the "Slave_Number" X 1000 (03 E 8 H) offset is added.
EXAMPLE : Slave number is 3 , the filter coefficient value (numbered of PH32 parameter) to read $\mathbf{3 \times 1 0 0 0 = 3 0 0 0}$ offset, Filter coefficient by adding to the 102 3rd. Slave's Filter coefficient address is found as of 3102 (0BB8h).
For 1st. slave this address is found as of $(1 \times 1000)+102=1102$ (04Eh).

ENDA ET1122 (MASTER) and ET1112 (SLAVE) PID UNIVERSAL
 STEP CONTROLLER MODBUS ADRESS MAP

1.3 Memory Map for Control Coils

Parameter Number	Coil Addresses Decimal (Hex)	Data type	Data content	Read / Write Permission	Factory defaults
C0	0000d (0000h)	Bit	Alarm2 Settings ($0=$ If Process value lower than set value, alarm is ON. 1 = If Process value higher than set value, alarm is ON.)	R W	1
C1	0001d (0001h)	Bit	Task for Alarm2 output in the case of sensor failure ($0=$ OFF , $1=\mathrm{ON}$).	R W	0
C2	0002d (0002h)	Bit	Alarm1 Settings ($0=$ If Process value lower than set value, alarm is ON . 1 = If Process value higher than set value, alarm is ON .)	R W	1
C3	0003d (0003h)	Bit	Task for Alarm1 output in the case of sensor failure ($0=$ OFF , $1=\mathrm{ON}$).	R W	0
C4	0004d (0004h)	Bit	Control output configuration ($0=$ Heating ; $1=$ Cooling).	R W	0
C5	0005d (0005h)	Bit	Temperature unit ($0={ }^{\circ} \mathrm{C} ; 1={ }^{\circ} \mathrm{F}$)	R W	0
C6	0006d (0006h)	Bit	Control outputs ($0=$ Indicator mode (Outputs OFF), $1=$ Control outputs active)	R W	1
C7	0007d (0007h)	Bit	According to the second set value control (If C7 $=0, \mathrm{H} 0$. If C7 $=1$, Temperature control is performed to according to the H 1 parameters).	R W	0
C8	0008d (0008h)	Bit	Manual control bit (If C8 = 0, Automatic control ; If C8 = 1, according to H9 parameter output percentage value for C/A2 or ANL/SSR output).	R W	0
C9	0009d (0009h)	Bit	Control selection bit incase of probe error. (If $\mathrm{C} 9=0$, according to H 10 parameter output percentage value incase of probe error. If $\mathrm{C} 9=1$, according to latest proportional output set value	R W	0

1.4 Memory Map for Step Control Coils

Parameter Number	Coil Addresses Decimal (Hex)	Data type	Data content	Read / Write Permission	Factory defaults
PCO.PC15	0100d $(0064 \mathrm{~h})$ 0115 d $(0073 \mathrm{~h})$	Bit	A1 alarm output programming coils at profile steps. If $\mathrm{PC} 0=1, \mathrm{~A} 1$ output is ON at first step. If $\mathrm{PC} 15=1, \mathrm{~A} 1$ output is ON at 16 th step.	R W	0
PC16.PC31	$\begin{array}{\|ll\|} \hline 0116 \mathrm{~d} & (0074 \mathrm{~h}) \\ 0131 \mathrm{~d} & (0083 \mathrm{~h}) \\ \hline \end{array}$	Bit	C/A2 alarm output programming coils at profile steps. If $\mathrm{PC} 16=1, \mathrm{C} / \mathrm{A} 2$ output is ON at first step. If $\mathrm{PC} 31=1, \mathrm{C} / \mathrm{A} 2$ output is ON at 16th step.	R W	0
PC32	0132d (0084h)	Bit	Controlled according to the set value or Profile control selection. (If PC32 $=0$, Thermostat mode. If PC32 $=1$, Profile control mode.	R W	0
PC33	0133d (0085h)	Bit	If PC33 $=0$, Profile mode is stopped and returned to first step. If PC33 $=1$, Profile mode is started.	R W	0
PC34	0134d (0086h)	Bit	If PC34 $=0$ and if Profile mode is started, process runs. If PC34 $=1$, profile operation is suspended at the recent point. (Hold mode).	R W	0
PC35	0135d (0087h)	Bit	If PC35 $=0$, when profile finished, control process stops. (Control outputs are OFF). If PC35 $=1$, when profile finished, control process continues according to last set value.	R W	0
PC36	0136d (0088h)	Bit	If PC36 $=0$, when power loss, profile stops and returned to first step. If PC36 = 1, when power up and if temperature setpoint in the current step, Profile continues. If the temperature setpoint is not in the current step, returned to first step.	R W	0
PC37	0137d (0089h)	Bit	If $\mathrm{PC} 37=0, \mathrm{~A} 1$ output is controlled by according to H 22 parameter. If $\mathrm{PC} 37=1$ and $\mathrm{PC} 32=1$, A 1 output is controlled by according to PH 35 parameter for every steps.	R W	0
PC38	0138d (008Ah)	Bit	If $\mathrm{PC} 38=0, \mathrm{~A} 2$ output is controlled by according to H 27 parameter. If $\mathrm{PC} 38=1$ and $\mathrm{PC} 32=1, \mathrm{C} / \mathrm{A} 2$ output is controlled by according to PH 36 parameter for every steps	R W	0

1.5 Memory Map for Input Registerlers

1.6 Memory Map for Step Control Input Registers

Parameter Number	Input Register Addresses Decimal (Hex)	Data type	Data content	Read / Write Permission
P10	0100d (0064h)	Word	Parameter number of active step.	R
P11	0101d (0065h)	Word	Remaining time indication of the active step.	R
Pl2	0102d (0066h)	Word	Target temperature of the active step.	R
PI3	0102d (0067h)	Word	Step control status indicator input registers (D0-D5 Step control status indicator bits of holding registers) Please see description in chapter 1.8 for the meaning of discrete input bits.	R

IMPORTANT ! : In order to access to slave registers, the "Slave_Number" X 1000 (03E8H) offset is added.
EXAMPLE : Slave number is 3 , the filter coefficient value (numbered of PH32 parameter) to read $3 \times 1000=\mathbf{3 0 0 0}$ offset, Filter coefficient by adding to the 102 3rd. Slave's Filter coefficient address is found as of 3102 (0BB8h).
For 1st. slave this address is found as of $(1 \times 1000)+102=1102(04 E h)$.

ENDA ET1122 (MASTER) and ET1112 (SLAVE) PID UNIVERSAL STEP CONTROLLER MODBUS ADRESS MAP

1.7 Memory Map for Output Status Indicator Bits

Parameter Number	Discrete input addresses	Data type	Data content	Read $/$ Write Permission
D0	$(0000) \mathrm{h}$	Bit	C/A2 Control output settings $(0=$ OFF, $1=$ ON $)$	R
D1	$(0001) \mathrm{h}$	Bit	A1 output settings $(0=$ OFF, $1=$ ON $)$	R
D2	$(0002) \mathrm{h}$	Bit	SSR Output settings $(0=$ OFF, $1=$ ON $)$	R
D3	$(0003) \mathrm{h}$	Bit	D1 Digital input settings $(0=$ OFF, $1=$ ON $)$	R
D4	$(0004) \mathrm{h}$	Bit	D2 Digital input settings $(0=$ OFF, $1=$ ON $)$	R

1.8 Memory Map for Step Control Status Indicators Bits

Parameter Number	Discrete input addresses	Data type	Data content	Read $/$ Write Permission
PD0	0100d (0064h)	Bit	If PD0 $=1$ 1, Profile is in constant temperature step.	R
PD1	0101d (0065h)	Bit	If PD1 $=1$, Profile is in heating step.	R
PD2	0102d (0066h)	Bit	If PD2 $=1$, Profile is in cooling step.	R
PD3	0103d (0067h)	Bit	If PD3 $=1$, Profile ended.	R
PD4	0104d (0068h)	Bit	If PD4 $=1$, Step timer is 0.	R
PD5	0105d (0069h)	Bit	If Pd5 $=1$, Step timer is running.	R

1.9 Memory Map for Software Revision Input Registers

RETURNING TO FACTORY SETTINGS :

In case of communication can not be done or any other reason, may be needed to return to the hardware factory values. In this case, (10), (12) and (1) inputs are short-circuited. Then, power up the device and wait for 2 seconds, devices will have been restored to factory settings.

Hardware connection schema for Factory Settings

2. MODBUS ERROR MESSAGES

Modbus protocol has two types error, communication error and operating error. Reason of the communication error is data corruption in transmission. Parity and CRC control should be done to prevent communication error. Receiver side checks parity and CRC of the data. If they are wrong, the message will be ignored. If format of the data is true but function doesn't perform for any reason, operating error occurs. Slave realizes error and sends error message. Most significant bit of function is changed ' 1 ' to indicate error in error message by slave. Error code is sent in data section. Master realizes error type via this message.

ModBus Error Codes

Error Code	Name	Meaning
01	ILLEGAL FUNCTION	The function code received in the query is not an allowable action for the slave. If a Poll Program Complete command was issued, this code indicates that no program function preceded it.
02	ILLEGAL DATA ADDRESS	The data address received in the query is not an allowable address for the slave.
03	ILLEGAL DATA VALUE	A value contained in the query data field is not an allowable value for the slave.

Message example;

Structure of command message (Byte Format)
Structure of response message (Byte Format)

Device Address		$(0 \mathrm{~A}) \mathrm{h}$
Function Code		$(01) \mathrm{h}$
Beginning address of coils.	MSB	$(04) \mathrm{h}$
	LSB	$(\mathrm{A} 1) \mathrm{h}$
Number of coils (N)	MSB	$(00) \mathrm{h}$
	LSB	$(01) \mathrm{h}$
CRC DATA	LSB	$(\mathrm{AC}) \mathrm{h}$
	MSB	$(63) \mathrm{h}$

Device Address		$(0 A) h$
Function Code		$(81) \mathrm{h}$
Error Code		$(02) \mathrm{h}$
CRC DATA	LSB	$(\mathrm{BO}) \mathrm{h}$
	MSB	$(53) \mathrm{h}$

As you see in command message, coil information of (4A1)h=1185 is required but there isn't any coil with 1185 address. Therefore error code with number (02) (Illegal Data Address) sends.

