ENDA ETS762 TACHO LINE/SPEED METER

Thank you for choosing ENDA ETS762 TACHOMETER.

* $72 \times 72 \mathrm{~mm}$ sized.
* 2×6 digits display.
* Easy to use by front panel keypad.
* On and Off times of the input pulses can be selected.
* Sensor type can be selected as PNP or NPN.
* Sampling time can be adjusted between 0.2 s and 16.0 s .
* Selectable functional reset.
* Double set-points control is made by 2 relays outputs.
* Output can be energized while process value is greater or lower than the preset value.
* Time delay can be included to the output operation.
* Output can be energized continuously or just for a time interval of 0.1 to 999.9 seconds.
* Decimal point can be adjusted between 1. and 5. digits.
* Prescaler factor can be adjusted between 0.00001 and 999.999 for calibration
* Display configuration can be adjusted.
* Parameter access protection on 3 levels.
* Easy connection by removable screw terminals.
* CE marked according to European Norms.

Order Code : ETS762- \qquad
Supply Voltage
230VAC...230V AC
24VAC..... 24 V AC
C ϵ
SM...........9-30V DC / 7-24V AC

TECHNICAL SPECIFICATIONS

ENVIRONMENTAL CONDITIONS	
Ambient/storage temperature	$0 \ldots+50^{\circ} \mathrm{C} /-25 \ldots+70^{\circ} \mathrm{C}$ (with no icing)
Max. relative humidity	80% up to $31^{\circ} \mathrm{C}$ decreasing linearly 50% at $40^{\circ} \mathrm{C}$.
Rated pollution degree	According to EN 60529 $\begin{array}{l}\text { Front panel : } \\ \text { Rear panel : }\end{array}$ IP65
Height	Max. 2000m
\. Do not use the device in locations subject to corrosive and flammable gases.	

ELECTRICAL CHARACTERISTICS	
Supply	230V AC $+10 \%-20 \%, 50 / 60 \mathrm{~Hz}$ or 24 V AC $\pm 10 \%, 50 / 60 \mathrm{~Hz}$ or optional 9-30V DC / 7-24V AC $\pm 10 \%$ SMPS
Power consumption	Max. 7VA
Wiring	$2.5 \mathrm{~mm}^{2}$ screw-terminal connections
Date retention	EEPROM (Min. 10 years)
EMC	EN 61326-1: 2006
Safety requirements	EN 61010-1: 2010 (pollution degree 2, overvoltage category II)
INPUTS	
Counting inputs (INA, INB)	3 channels (5 V to 30 V pulses)
Minimum On and Off times for pulses	$40 \mathrm{~ms}, 20 \mathrm{~ms}, 10 \mathrm{~ms}, 1 \mathrm{~ms}, 0.5 \mathrm{~ms}, 0.1 \mathrm{~ms}, 50 \mu \mathrm{~s}$ (selectable by programming)
Sampling time	Adjustable between 0.2 s and 16.0s.
RESET and HOLD inputs	PNP: 5 V to 30 V pulse with adjustable pulse time between 2 ms and 50 ms . NPN: GND terminal is connected to the RESET IN or HOLD IN terminal.

OUTPUTS	
Control output (OUT1)	Relay : 250V AC, 2A (for resistive load), NO+NC
	Open collector output (S.S. OUT1): Max. 30V DC, 100mA.
Control output (OUT2)	Relay : 250V AC, 2A (for resistive load), NO+NC
	Open collector output (S.S. OUT2): Max. 30V DC, 100mA.
	12V DC, Max. 50mA (without regulation)
Accuracy	$\pm 0.1 \%$
Life expectancy for relays	Mechanical 30.000.000 operation; Electrical 300.000 operation.
Note : Relay and S.S.OUT outputs are in synchronization . When OUT1 relay is energized S.S. OUT1 transistor goes into saturation. Similarly, when OUT2 relay is energized S.S. OUT2 transistor goes into saturation.	

TERMS

(1) The value of the measurement selected by Parameter name during programming mode.
(2) The value of the parameter selected by $\operatorname{cont}_{\text {con }} 5 \rho$ id parameter during run mode. Parameter value during programming mode.
(3) State indicators shows the state of the device.
(4) Used for adjusting the preset values in the run mode.

Increment or parameter selection key during programming mode
(5) Decrement or reset key in the run mode.

Decrement or parameter selection key during programming mode
(6) Used for selecting preset1, preset2 or user defined message in the run mode.

Used for selecting oPt ion. s or parameter to be changed in the programming mode.
(7) Used for selecting run or programming modes or for adjusting parameters.

(1) Digital display	6 digits, 7 segment red LED
(2) Digital display	6 digits, 7 segment yellow LED
Character height	Digital display (1): 9.1 mm
	Digital display (2): 7.1 mm
(3) State indicators	4 red LEDs
(4),(5),(6),(7) Keypad	Micro switch

ENDA ETS762 is intended for installation in control panels. Make sure that the device is used only for intended purpose. The shielding must be grounded on the instrument side. During an installation, all of the cables that are connected to the device must be free of energy. The device must be protected against inadmissible humidity, vibrations, severe soiling and make sure that the operation temperature is not exceeded. All input and output lines that are not connected to the supply network must be laid out as shielded and twisted cables. These cables should not be close to the power cables or components. The installation and electrical connections must be carried on by a qualified staff and must be according to the relevant locally applicable regulations.

Note: 1) Mains supply cords shall meet the requirements of IEC 60227 or IEC 60245.
2) In accordance with the safety regulations, the power supply switch shall bring the identification of the relevant instrument and it should be easily accessible by the operator.

Holding screw $0.4-0.5 \mathrm{Nm}$
Equipment is protected throughout
by DOUBLE INSULATION

$\inf _{t \cup \mathcal{E}}$	MEASUREMENT METHODS ACCORDING TO INPUT TYPES
tricho	Revolution measurement method (rpm: revolution/minute)
2 inR bin rRt io	
$\operatorname{sic}_{\operatorname{Ling}} \varepsilon_{d}^{3}$	
pEr od ${ }^{4}$	Period measurement method
5 $\varepsilon \operatorname{in} \varepsilon$ inter.	Time difference measurement method
6 PULS $t \operatorname{in} \varepsilon$.	Pulse duration measurement method
7 Count PEr.PLS.	

OUTPUT TYPES	
	$\begin{aligned} & \text { outPut }=\text { out }: H_{1} \\ & \text { conf } \end{aligned}$
Adjusting out out , or out out? , to a value between 0.1 and 999.9 seconds, a pulse output is obtained.	Adjusting pout ! or oute? to 0.0 , a continuous output is obtained.

TERMINAL CONNECTIONS

TYPICAL SENSOR CONNECTIONS

